Rodrigo Loro Schuller

28 November 2019

Introduction

- Rise in learning-based 3D reconstruction (2015-2016);
- The problem of 3D representation:
 - State-of-the-art alternatives;
 - Occupancy network;
- Results and comparisons;
- Failure cases and further work;

The problem of 3D representation

- Harder than 2D no agreed upon standards;
- State-of-the-art alternatives:
 - Voxels;
 - $\circ\,$ Point clouds;
 - Meshes;
- Occupancy networks;

Voxels

The good, the bad and the ugly

Voxels - The good

- Natural extension to pixels;
- Simple:
 - We have marching cubes for mesh construction;
 - Works well on GPU;

Definition (Similarity) A *similarity transformation* is an affine transformation $x \mapsto Ax + b$ in which $A = \alpha Q$ for any orthogonal matrix Q.

 Low resolution voxel-based representations don't behave well under ST!

Let T^X_{λ} be a group of transformations in the space X, with correspondents T^Y_{λ} in the space Y.

Definition (Equivariance) A function $\phi: X \to Y$ is *equivariant* under the group T if $\forall \lambda \in \Lambda, \ \forall x \in X, \ \phi\left(T_{\lambda}^{X}x\right) = T_{\lambda}^{Y}\phi(x).$

Let T^X_{λ} be a group of transformations in the space X, with correspondents T^Y_{λ} in the space Y.

Definition (Equivariance) A function $\phi: X \to Y$ is *equivariant* under the group T if $\forall \lambda \in \Lambda, \ \forall x \in X, \ \phi\left(T_{\lambda}^{X}x\right) = T_{\lambda}^{Y}\phi(x)$.

Definition (Invariance) $orall \lambda \in \Lambda, \ orall x \in X, \ \phi\left(T^X_\lambda x
ight) = \phi(x).$

Let T^X_{λ} be a group of transformations in the space X, with correspondents T^Y_{λ} in the space Y.

Definition (Equivariance) A function $\phi: X \to Y$ is *equivariant* under the group T if $\forall \lambda \in \Lambda, \ \forall x \in X, \ \phi\left(T_{\lambda}^{X}x\right) = T_{\lambda}^{Y}\phi(x)$.

Definition (Invariance) $orall \lambda \in \Lambda, \ orall x \in X, \ \phi\left(T^X_\lambda x
ight) = \phi(x).$

Observation Standard CNNs are equivariant to discrete translations!

We can make 2D CNNs equivariant to \mathbb{Z}_4 :

We can make 2D CNNs equivariant to \mathbb{Z}_4 :

And to other rotations!

In 3D we have equivariance under S_4 :

[1] CubeNet: Equiv. to 3D R. and Translation, D. Worrial and G. Brostow (2018)

- The elephant in the room is the $\Theta(n^3)$ complexity!
- But we can make it better;

Activation profile for different pooling layers in ConvNet

Activation profile for different pooling layers in ConvNet

Let's try octrees!

Voxels - Memory complexity (the ugly) Octree - Adaptative data structure

[2] OctNet Learning 3D Repr. at High Resolutions, G. Riegler (2017)

Most state-of-the art voxel-based RNN use 32^3 or 64^3 voxels.

Figure: comparison between resolutions, from 16 to 128.

Most state-of-the art voxel-based RNN use 32^3 or 64^3 voxels.

Figure: comparison between resolutions, from 16 to 128.

Observation 3D-R2N2 (Choy, 2016) uses 32^3 .

Point clouds as 3D representations

Figure: Reconstructed 3D point clouds (H. Fan, 2016) and a torus.

Point clouds as 3D representations

- Behave well under similarity and other geometric transformations;
- More efficient than voxels adaptative;
- Produce nice 3D models in NNs:
 - Architecture divided in two parts to account for large and smooth surfaces;
 - Good for segmentation analysis;
- Extracting meshes is complicated;

Generation network using point clouds

Observation Local and global specializations. Sounds familiar?

[3] A Point Set G. N. for 3D Object Reconst. from a Single Image, H. Fan (2016)

H. specialization - Split-brain patient

[5] Unknown source, taken from J. Gabrieli's lecture slides

H. specialization - Anatomy of the brain

Figure Drawing of *corpus callosum*, connecting the local (LH) and the global (RH).

Meshes for 3D reconstruction

Good in theory

Meshes for 3D reconstruction

Main takeaways

- Behave well with geometric transformations;
- Small memory footprint and fast operations;
- But hard to use in practice:
 - Intersections/overlaps or non-closed geometry;
 - Topology limitations;

Meshes for 3D reconstruction - AtlasNet

[6] AtlasNet: A Papier-Mâché Approach to L. 3D Surface G., T. Groueix (2018)

Meshes for 3D reconstruction - Pixel2Mesh

[7] Pixel2Mesh: Generating 3D Mesh Models from S. RGB Images, N. Wang (2018)

Learning 3D Reconstruction in Function Space

Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas

2019

Ideally, we would like to know the *occupancy function*

 $o: \mathbb{R}^3 o \{0,1\}$

Ideally, we would like to know the *occupancy function*

 $o: \mathbb{R}^3 o \{0,1\}$

Key idea Approximate with a continuous function!

Definition For a given input $x \in X$, we want a binary classification neural network: $f^x: \mathbb{R}^3 o [0,1]$.

Definition For a given input $x \in X$, we want a binary classification neural network: $f^x: \mathbb{R}^3 o [0,1]$. But we can just add x to the inputs, ie,

$$f_ heta: \mathbb{R}^3 imes X o [0,1].$$

We call f_{θ} the *Occupancy Network*.

Definition For a given input $x \in X$, we want a binary classification neural network: $f^x: \mathbb{R}^3 o [0,1]$. But we can just add x to the inputs, ie,

$$f_ heta: \mathbb{R}^3 imes X o [0,1].$$

We call f_{θ} the *Occupancy Network*.

Observation The approximated 3D surface, for a particular x_0 , is given by S = $\{p \in \mathbb{R}^3 \mid f_{ heta}(p, x_0) = au\};$

Representation capabilities

Figure: 32 to 128 voxels vs Occupancy Network.

Representation capabilities

Occupancy Network - Training

- 1. Randomly sample points in the 3D bounding volume of the object
 - with padding;

Occupancy Network - Training

1. Randomly sample points in the 3D bounding volume of the object

- with padding;
- 2. Evaluate the mini-batch loss

$$\mathcal{L}_{\mathcal{B}}(heta) = rac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \mathcal{L}(f_{ heta}(p_{ij}, x_i), o_{ij})$$

in which \mathcal{L} is a cross-entropy classification loss.

Occupancy Network - Training

1. Randomly sample points in the 3D bounding volume of the object

- with padding;
- 2. Evaluate the mini-batch loss

$$\mathcal{L}_{\mathcal{B}}(heta) = rac{1}{|\mathcal{B}|}\sum_{i=1}^{|\mathcal{B}|}\sum_{j=1}^{K}\mathcal{L}(f_{ heta}(p_{ij},x_i),o_{ij})$$

in which \mathcal{L} is a cross-entropy classification loss.

Observation Different sampling schemes were tested, random in the BB w/ padding worked best.

Occupancy Network - Architecture

- Fully connected neural network with 5 ResNet blocks using conditional batch normalization;
- Different encoders depending on the input:
 - SVI ResNet18;
 - Point clouds PointNet;
 - Voxelized inputs 3D CNN;
 - Unconditional mesh generation PointNet;

Occupancy Network - MISE

Figure Multiresolution IsoSurface Extraction Method.

Results and comparisons

SI 3D reconstruction (ShapeNet)

Input 3D-R2N2 PSGN Pix2Mesh AtlasNet Ours

SI 3D reconstruction (ShapeNet)

Pix2Mesh Input 3D-R2N2 PSGN AtlasNet Ours Ares

SI 3D reconstruction (ShapeNet)

	IoU				Chamfer- L_1				Normal Consistency						
	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet	3D-R2N2	PSGN	Pix2Mesh	AtlasNet	ONet
category															
airplane	0.426	-	0.420	-	0.571	0.227	0.137	0.187	0.104	0.147	0.629	-	0.759	0.836	0.840
bench	0.373	-	0.323	-	0.485	0.194	0.181	0.201	0.138	0.155	0.678	-	0.732	0.779	0.813
cabinet	0.667	-	0.664	-	0.733	0.217	0.215	0.196	0.175	0.167	0.782	-	0.834	0.850	0.879
car	0.661	-	0.552	-	0.737	0.213	0.169	0.180	0.141	0.159	0.714	-	0.756	0.836	0.852
chair	0.439	-	0.396	-	0.501	0.270	0.247	0.265	0.209	0.228	0.663	-	0.746	0.791	0.823
display	0.440	-	0.490	-	0.471	0.314	0.284	0.239	0.198	0.278	0.720	-	0.830	0.858	0.854
lamp	0.281	-	0.323	-	0.371	0.778	0.314	0.308	0.305	0.479	0.560	-	0.666	0.694	0.731
loudspeaker	0.611	-	0.599	-	0.647	0.318	0.316	0.285	0.245	0.300	0.711	-	0.782	0.825	0.832
rifle	0.375	-	0.402	-	0.474	0.183	0.134	0.164	0.115	0.141	0.670	-	0.718	0.725	0.766
sofa	0.626	-	0.613	-	0.680	0.229	0.224	0.212	0.177	0.194	0.731	-	0.820	0.840	0.863
table	0.420	-	0.395	-	0.506	0.239	0.222	0.218	0.190	0.189	0.732	-	0.784	0.832	0.858
telephone	0.611	-	0.661	-	0.720	0.195	0.161	0.149	0.128	0.140	0.817	-	0.907	0.923	0.935
vessel	0.482	-	0.397	-	0.530	0.238	0.188	0.212	0.151	0.218	0.629	-	0.699	0.756	0.794
mean	0.493	-	0.480	-	0.571	0.278	0.215	0.216	0.175	0.215	0.695	-	0.772	0.811	0.834

SI 3D reconstruction (real world data)

(a) KITTI

(b) Online Products

Reconstruction from point clouds

	IoU	Chamfer- L_1^{\dagger}	Normal Consistency
3D-R2N2	0.565	0.169	0.719
PSGN	-	0.144	-
DMC	0.674	0.117	0.848
ONet	0.778	0.079	0.895

Voxel super resolution

	IoU	Chamfer- L_1	Normal Consistency
Input	0.631	0.136	0.810
ONet	0.703	0.109	0.879

Figure Input resolution of 32^3 voxels.

Unconditional 3D samples

Figure Random samples of unsupervised models trained on different categories.

Failure cases and further work

Other references with similar ideas

[8] DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, Park et al. (2019)

[9] Learning Implicit Fields for Generative Shape Modeling, Chen et al. (2019)

[10] Deep Level Sets: Implicit Surface Representations for 3D Shape Inference, Michalkiewicz et al. (2019)

Thank you!