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Introduction

Rise in learning-based 3D reconstruction (2015-2016);

The problem of 3D representation:

o State-of-the-art alternatives;
o Occupancy network;

Results and comparisons;

Failure cases and further work;



The problem of 3D representation

« Harder than 2D - no agreed upon standards;
« State-of-the-art alternatives:

o Voxels;

o Point clouds;

o Meshes;

« Occupancy networks;



Voxels
The good, the bad and the ugly



Voxels - The good

« Natural extension to pixels;
e Simple:
o We have marching cubes for mesh construction;

o Works well on GPU;



Voxels - Similarity operations (the bad)

Definition (Similarity) A similarity transformation is an affine

transformation © — Ax + b in which A = a() for any orthogonal
matrix Q.

« Low resolution voxel-based representations don't behave well
under ST!



Voxels - Similarity operations (the bad)

Let T;\X be a group of transformations in the space X, with
correspondents T}f in the space Y.

Definition (Equivariance) A function ¢ : X — Y is equivariant
under the group T if VA € A, Vz € X, ¢ (T z) = Ty ¢(z).
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Voxels - Similarity operations (the bad)

Let T)‘\X be a group of transformations in the space X, with
correspondents T}f in the space Y.

Definition (Equivariance) A function ¢ : X — Y is equivariant
under the group T if VA € A, Vz € X, ¢ (T z) = Ty ¢(z).

Definition (Invariance) VA € A, Vz € X, ¢ (T} z) = ¢(x).

Observation Standard CNNs are equivariant to discrete translations!



Voxels - Similarity operations (the bad)

We can make 2D CNNs equivariant to Zy:
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Voxels - Similarity operations (the bad)

We can make 2D CNNs equivariant to Zy:
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And to other rotations!



Voxels - Similarity operations (the bad)

In 3D we have equivariance under Sy:
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[1] CubeNet: Equiv. to 3D R. and Translation, D. Worrial and G. Brostow (2018)



Voxels - Memory complexity (the ugly)

« The elephant in the room is the @(n3) complexity!

« But we can make it better;



Voxels - Memory complexity (the ugly)

Activation profile for different pooling layers in ConvNet

Dense 3D ConvNet Dense 3D ConvNet



Voxels - Memory complexity (the ugly)

Activation profile for different pooling layers in ConvNet

Dense 3D ConvNet Dense 3D ConvNet

Let's try octrees!



Voxels - Memory complexity (the ugly)

Octree - Adaptative data structure




Voxels - Memory complexity (the ugly)
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[2] OctNet Learning 3D Repr. at High Resolutions, G. Riegler (2017)



Voxels - Memory complexity (the ugly)

Most state-of-the art voxel-based RNN use 323 or 64° voxels.

Figure: comparison between resolutions, from 16 to 128.



Voxels - Memory complexity (the ugly)

Most state-of-the art voxel-based RNN use 323 or 64° voxels.

Figure: comparison between resolutions, from 16 to 128.

Observation 3D-R2N2 (Choy, 2016) uses 323.



Point clouds as 3D representations

Figure: Reconstructed 3D point clouds (H. Fan, 2016) and a torus.



Point clouds as 3D representations

Behave well under similarity and other geometric transformations;

More efficient than voxels - adaptative;

Produce nice 3D models in NNs:

o Architecture divided in two parts to account for large and
smooth surfaces;

o Good for segmentation analysis;

Extracting meshes is complicated;



Generation network using point clouds

conv deconv fully connected set union concatenation
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Observation Local and global specializations. Sounds familiar?

[3] A Point Set G. N. for 3D Object Reconst. from a Single Image, H. Fan (2016)



H. specialization - Split-brain patient

Standard Left Hand Right Hand

T 1 94

[5] Unknown source, taken from J. Gabrieli's lecture slides

<<=



H. specialization - Anatomy of the brain

Figure Drawing of corpus callosum, connecting the local (LH) and
the global (RH).



Meshes for 3D reconstruction

Good in theory




Meshes for 3D reconstruction

Main takeaways

« Behave well with geometric transformations;
« Small memory footprint and fast operations;
« But hard to use in practice:
o Intersections/overlaps or non-closed geometry;

o Topology limitations;



Meshes for 3D reconstruction - AtlasNet

[6] AtlasNet: A Papier-Maché Approach to L. 3D Surface G., T. Groueix (2018)



Meshes for 3D reconstruction - Pixel2Mesh
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[7] Pixel2Mesh: Generating 3D Mesh Models from S. RGB Images, N. Wang (2018)



Occupancy Network

Learning 3D Reconstruction in Function
Space

Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and
Nowozin, Sebastian and Geiger, Andreas

2019



Occupancy Network

|deally, we would like to know the occupancy function

o:R?>— {0,1}



Occupancy Network

|deally, we would like to know the occupancy function
o:R?>— {0,1}

Key idea Approximate with a continuous function!



Occupancy Network

Definition For a given input £ € X, we want a binary classification
neural network: f% : R3 — [0, 1].



Occupancy Network

Definition For a given input £ € X, we want a binary classification

neural network: fZ : R3 — [0, 1]. But we can just add z to the
iInputs, ie,

fa: R3 x X —[0,1].

We call fy the Occupancy Network.



Occupancy Network

Definition For a given input £ € X, we want a binary classification

neural network: fZ : R3 — [0, 1]. But we can just add z to the
iInputs, ie,

fg:RS X X — [0,1].
We call fy the Occupancy Network.

Observation The approximated 3D surface, for a particular g, is
given by S = {p € R*| fo(p, z0) = 7}



Occupancy Network

Representation capabilities

Figure: 32 to 128 voxels vs Occupancy Network.



Occupancy Network

Representation capabilities
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Occupancy Network - Training

1. Randomly sample points in the 3D bounding volume of the object
- with padding;
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1. Randomly sample points in the 3D bounding volume of the object
- with padding;

2. Evaluate the mini-batch loss

Ls(0) = i S50 S L(folpij, ), 035)

in which L is a cross-entropy classification loss.



Occupancy Network - Training

1. Randomly sample points in the 3D bounding volume of the object
- with padding;

2. Evaluate the mini-batch loss

Ls(0) = i S50 S L(folpij, ), 035)

in which L is a cross-entropy classification loss.

Observation Different sampling schemes were tested, random in the
BB w/ padding worked best.



Occupancy Network - Architecture
e Fully connected neural network with 5 ResNet blocks using
conditional batch normalization;
« Different encoders depending on the input:
o SVI - ResNet18;
o Point clouds - PointNet;
o Voxelized inputs - 3D CNN;

o Unconditional mesh generation - PointNet;



Occupancy Network - MISE
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Figure Multiresolution IsoSurface Extraction Method.




Results and comparisons




S| 3D reconstruction (ShapeNet)

Input  3D-R2N2 PSGN  Pix2Mesh AtlasNet Ours




S| 3D reconstruction (ShapeNet)

Input  3D-R2N2 PSGN  Pix2Mesh AtlasNet Ours




S| 3D reconstruction (ShapeNet)

IoU Chamfer-Lq Normal Consistency

3D-R2N2 PSGN Pix2Mesh AtlasNet ONet | 3D-R2N2 PSGN Pix2Mesh AtlasNet ONet | 3D-R2N2 PSGN Pix2Mesh AtlasNet ONet
category
airplane 0.426 - 0.420 - 0.571 0.227 0.137 0.187 0.104 0.147 0.629 - 0.759 0.836 0.840
bench 0.373 - 0.323 - 0.485 0.194 0.181 0.201 0.138 0.155 0.678 - 0.732 0.779 0.813
cabinet 0.667 - 0.664 - 0.733 0.217 0.215 0.196 0.175 0.167 0.782 - 0.834 0.850 0.879
car 0.661 - 0.552 - 0.737 0.213 0.169 0.180 0.141 0.159 0.714 - 0.756 0.836 0.852
chair 0.439 - 0.396 - 0.501 0.270 0.247 0.265 0.209 0.228 0.663 - 0.746 0.791 0.823
display 0.440 - 0.490 - 0471 0.314 0.284 0.239 0.198 0.278 0.720 - 0.830 0.858 0.854
lamp 0.281 - 0.323 - 0.371 0.778 0.314 0.308 0.305 0.479 0.560 - 0.666 0.694 0.731
loudspeaker 0.611 - 0.599 - 0.647 0.318 0.316 0.285 0.245 0.300 0.711 - 0.782 0.825 0.832
rifle 0.375 - 0.402 - 0.474 0.183 0.134 0.164 0.115 0.141 0.670 - 0.718 0.725 0.766
sofa 0.626 - 0.613 - 0.680 0.229 0.224 0.212 0.177 0.194 0.731 - 0.820 0.840 0.863
table 0.420 - 0.395 - 0.506 0.239 0.222 0.218 0.190 0.189 0.732 - 0.784 0.832 0.858
telephone 0.611 - 0.661 - 0.720 0.195 0.161 0.149 0.128 0.140 0.817 - 0.907 0.923 0.935
vessel 0.482 - 0.397 - 0.530 0.238 0.188 0.212 0.151 0.218 0.629 - 0.699 0.756 0.794

mean ‘ 0.493 - 0.480 - 0.571‘ 0.278 0.215 0.216 0.175 0.215‘ 0.695 - 0.772 0.811 0.834




S| 3D reconstruction (real world data)

Input Reconstruction Input Reconstruction
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(a) KITTI (b) Online Products



Reconstruction from point clouds

IoU Chamfer-L;" Normal Consistency

3D-R2N2  0.565 0.169 0.719
PSGN - 0.144 -
DMC 0.674 0.117 0.848

ONet 0.778 0.079 0.895




Voxel super resolution

IoU Chamfer-L; Normal Consistency

Input 0.631 0.136 0.810
ONet 0.703 0.109 0.879

Figure Input resolution of 3223 voxels.



Unconditional 3D samples
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Figure Random samples of unsupervised models trained on different
categories.




Failure cases and further work

Ours




Other references with similar ideas

[8] DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation, Park et al. (2019)

[2] Learning Implicit Fields for Generative Shape Modeling, Chen et
al. (2019)

[10] Deep Level Sets: Implicit Surface Representations for 3D Shape
Inference, Michalkiewicz et al. (2019)



Thank you!



